
The role of attractive many-body interaction in the gas–liquid transition of mercury

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 072102

(http://iopscience.iop.org/0953-8984/19/7/072102)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 16:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/7
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 072102 (7pp) doi:10.1088/0953-8984/19/7/072102

FAST TRACK COMMUNICATION

The role of attractive many-body interaction in the
gas–liquid transition of mercury

Hikaru Kitamura

Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Received 1 December 2006
Published 2 February 2007
Online at stacks.iop.org/JPhysCM/19/072102

Abstract
The equation of state for expanded fluid mercury based on the variational
associating fluid theory is developed to elucidate the mechanisms of the gas–
liquid transition in terms of microscopic interatomic interaction. The theory
describes the interaction of an atom with its neighbouring atoms through an
effective many-body potential, which is constructed through quantum-chemical
calculations of cohesive energies for selected geometries of clusters and bulk
crystals. The overall feature of the observed gas–liquid coexistence curve
is reproduced accurately without introducing phenomenological adjustable
parameters. It is shown that the local aggregation of atoms produces a strong
cohesive force due to a change in the local electronic states, which plays a
crucial role in the gas–liquid transition. The predicted phase behaviour is
consistent with the picture of inhomogeneous expansion, in which the average
coordination number is nearly proportional to the average density along the
coexistence curve.

It is a fundamental and challenging issue of condensed matter physics to predict the
macroscopic phase behaviour of an elementary substance with first-principles theories [1]. For
a simple fluid, in which the constituent atoms mutually interact via pairwise-additive binary
forces, thermodynamic quantities and gas–liquid coexistence curves can be calculated either
by analytic theories or by simulations [2]. Mercury, one of the most prototypical materials
of all the fluid metals, may be regarded as a non-simple fluid in the sense that its interatomic
interaction depends strongly on thermodynamic states: metallic bonding in the liquid phase
differs considerably from the van der Waals bonding in the gas phase [3]. Moreover, due to the
density fluctuation inherent in fluids, the strength of interatomic interaction may be influenced
sensitively by a change in the local atomic environment, such as temporary clustering (i.e.,
association) [4].

In this communication, we report on a new equation of state for expanded fluid mercury
based on the variational theory of statistical physics, taking additional account of the association
effect and quantum chemical modelling of microscopic many-body interaction. To the author’s
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knowledge, this is the first theory to predict the gas–liquid coexistence curve of elementary
mercury from room temperature to the critical point by using ab initio interatomic potentials as
input. Moreover, the formalism is quite general and would be applicable to other liquids after
suitable modifications.

An isolated Hg atom has the closed-shell 6s2 1S0 electronic configuration in the ground
state. The potential energy curve, Vdimer(r), of a Hg2 dimer in the ground state was computed
by Schwerdtfeger et al [5] based on spin–orbit corrected scalar relativistic coupled cluster
calculations. The analytic formula for Vdimer(r) in their s-cc-ULB + SO scheme is available
in table 1 of [5]. In terms of Vdimer(r), the potential energy function of a fluid consisting of N
mercury atoms is written generally as

V (r1, . . . , rN ) = 1

2

N∑

i, j=1
i �= j

Vdimer(|ri − r j |) + Vmb(r1, . . . , rN ) (1)

where ri denotes the positional vector of the i th nucleus. Because the binding energy of
Hg2 amounts to 0.043 eV [5], and this value is far smaller than observed gas–liquid critical
temperature, Tc(exp) = 1751 K = 0.151 eV, the bulk of the cohesive force responsible for the
gas–liquid transition should arise from the many-body potential, Vmb.

The basic idea of this work is to evaluate Vmb for particular geometries of clusters and
crystalline solids, and to express Vmb/N as a function of two relevant parameters: z (mean
coordination number) and rnn (nearest-neighbour distance). For this purpose, we have carried
out quantum-chemical diatomics-in-molecules calculations [6] of Vmb(z, rnn)/N for small HgN
clusters with the following ground-state geometries: equilateral triangle (D3h) for N = 3,
tetrahedron (Td) for N = 4, trigonal bipyramid (D3h) for N = 5, and pentagonal bipyramid
(D5h) for N = 7. These geometries may be characterized by mean coordination numbers of
z = 2, 3, 3.60, and 4.29, respectively. Here, we have assumed breathing motions so that the
value of rnn for all the bonds within a cluster has been changed simultaneously in the range
5.3 � rnn/aB � 6.5, with aB denoting the Bohr radius. In this range, mercury clusters remain
nonmetallic, with a finite energy gap between the ground and first-excited energy levels [6].

We have likewise evaluated Vmb(z, rnn)/N for face-centred cubic (fcc; z = 12) and body-
centred cubic (bcc; z = 8) structures of the bulk solids, which may be treated as divalent
metals [3]. We have followed the modified pseudopotential approach by Chekmarev et al [7]:
the Ashcroft empty-core pseudopotential has been used for the bare electron–ion interaction,
with a core radius of Rc = 0.915aB. Electron–electron correlation has been treated with
the local-field correction by Ichimaru and Utsumi [8]. The resultant density-dependent ion–
ion interaction has been modified by adding the Born–Mayer repulsive potential, as explained
in [7]. An empirical correction to the structure-independent energy [7] has also been included
as a function of the conduction electron density so as to reproduce the experimental cohesive
energy of 0.67 eV/atom at z = 12.

Numerical values of Vmb(z, rnn)/N so computed are displayed in figure 1. We find that
the many-body interaction is attractive (Vmb < 0) and its magnitude increases as rnn decreases
and/or z increases. This feature can be interpreted as the increasing admixture of the excited
p state onto the ground s state in the electronic wavefunctions when more atoms come closer
to each other [6]. The magnitude of Vmb(z, rnn)/N is especially large for z > 8, reflecting
a considerable deviation of the short-range interaction in the metallic phase from that in the
isolated dimer.

We have no convincing theoretical data for Vmb(z, rnn) in the intermediate-z range where
the metal–nonmetal (M–NM) transition [3, 9] takes place. Therefore, we have linearly
interpolated the data at z = 4.29 and 8 as shown by the solid curves in figure 1. Though
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Figure 1. Many-body potential per atom. Dots, crosses, and triangles refer to computed data; the
solid lines depict their interpolations.

this is a crude treatment of the M–NM transition, we remark that the experimental cohesive
energies of HgN clusters by Haberland et al [9] exhibit similar crossover from nonmetallic to
metallic behaviour in the range N ≈ 15–100, which may correspond to z ≈ 7–9 for icosahedral
geometries or z ≈ 5–8 for tetrahedral geometries [10]. It should be noted that their experiment
may detect clusters whose bond lengths are close to the equilibrium values; the corresponding
data for smaller or larger bond lengths are not exactly known.

For given atomic number density n and temperature T , the Helmholtz free energy F is
formulated with the soft-sphere variational theory proposed by Ross [11]. We adopt the inverse
sixth-power potential as a reference [12], with the recognition that the short-range repulsive
part of Vdimer(r) is approximately proportional to 1/r 6.2 [13]. Thus, f ≡ F/NkBT may be
expressed as

f (n, T, σ ) ≈ fid − sex
HS + n

2kBT

∫ ∞

σ

dr4πr 2Vdimer(r)gHS(r) +
〈

Vmb(z, rnn)

NkBT

〉

HS

+ f6. (2)

Here, fid = ln(λ3n) − 1 represents the ideal-gas free energy with λ = (2π h̄2/MkBT )1/2, and
M = 3.331×10−22 g is the mass of a Hg atom. The quantities with subscript ‘HS’ are evaluated
for the hard-sphere fluid with core diameter σ . The quantity sex

HS = −η(4 − 3η)/(1 − η)2

denotes the excess entropy in the Carnahan–Stirling approximation [2], with η = πnσ 3/6
being the packing fraction. The last term, f6 = −0.932 71η − 0.495 05η2 − 2.129 24η3 +
0.500 30η4, represents the soft-sphere correction obtained by Young and Rogers [12]. The
radial distribution function gHS(r) for the hard-sphere fluid is available in parameterized form
in Trokhymchuk et al [14].

In fluids, the coordination number z of an arbitrarily chosen atom may be defined as
the number of nearest-neighbour atoms contained within a sphere of certain volume v (=
4πr 3

max/3) encompassing that atom. In light of the observation in figure 1, we expect that
an atom with larger z and/or smaller rnn may feel stronger attractive force. Such a many-body
effect is described by the term 〈· · ·〉HS in equation (2), which we evaluate as

〈
Vmb(z, rnn)

NkBT

〉

HS

=
zmax∑

z=1

pHS(z)

∫ rmax

σ
drnn HHS(rnn)

Vmb(z,rnn)

NkB T∫ rmax

σ
drnn HHS(rnn)

. (3)
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Figure 2. Gas–liquid coexistence curve on the mass density–temperature plane. The solid curve
represents the full result; the dashed curve is the corresponding result with Vmb = 0; the dash–
dotted curve is experimental data [3, 16]. The mean density ρd in the present theory is plotted by
the dotted curve; the corresponding experimental data [3, 16] are shown by the dots.

Here, pHS(z) is the distribution function of z in the hard-sphere fluid. Within the excluded-
volume approximation [4], we have pHS(z) = [pHS(0)/z!](nv−η)(nv−2η) · · · (nv−zη)/(1−
η)z for 1 � z � zmax; pHS(0) is determined from the normalization,

∑zmax
z=0 pHS(z) = 1. In this

work, we take the maximum value of z as zmax = 12 (corresponding to the fcc lattice), and v is
chosen as v = (zmax + 1)πσ 3/6, leading to rmax = (zmax + 1)1/3σ/2 = 1.176σ . In this case,
it can be proven that the average coordination number, 〈z〉 ≡ ∑zmax

z=0 zpHS(z), is proportional to
the packing fraction as 〈z〉 = zmaxη.

The distribution function HHS(rnn) represents the probability of finding a nearest-
neighbour particle at distance rnn from the reference particle. The properties of this function
were discussed in detail by Torquato [15]. We adopt the analytic expression given by
equation (43) of [15]. We note that HHS(rnn) is a decreasing function of rnn with a peak at
rnn = σ ; the peak becomes sharper as η increases.

For given n and T , the total free energy f (n, T, σ ) is minimized with respect to the
variational parameter, σ . The pressure P and Gibbs free energy G are then calculated as
p ≡ P/nkBT = n(∂ f/∂n)T and G/NkBT = f + p. The gas–liquid transition densities, ngas

and nliq, are obtained in accordance with the conditions of two-phase equilibrium, P(ngas, T ) =
P(nliq, T ) and G(ngas, T ) = G(nliq, T ). The gas–liquid coexistence curves so obtained are
displayed in figure 2 (ρm–T diagram; ρm ≡ Mn) and in figure 3 (T –P diagram). It can be
seen that the theoretical coexistence curves reproduce the experimental data [3, 16] reasonably
well. The critical density, temperature, and pressure are predicted to be ρc = 5.82 g cm−3,
Tc = 1774 K, and Pc = 1.97 kbar, respectively, which are in good agreement with the
corresponding experimental values [3], ρc(exp) = 5.8 g cm−3, Tc(exp) = 1751 K, and
Pc(exp) = 1.67 kbar. The liquid density at the melting point (T = 234 K, P = 1 bar)
turns out to be 14.02 g cm−3, which is comparable to the experimental value, 13.65 g cm−3.

For comparison, we have repeated the same calculation by setting Vmb = 0 in equation (2).
The resultant coexistence curves, shown by dashed curves in figures 2 and 3, clearly indicate
that the attractive interaction associated with Vdimer(r) is too weak to account for the observed
gas–liquid transition.

In figure 2, we also plot the average of the gas and liquid densities, ρd ≡ M(ngas + nliq)/2.
According to the experimental data [3, 16], starting from sufficiently low temperature, ρav
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Figure 3. Same as figure 2 but on the temperature–pressure plane. The dots depict the critical
points.

first decreases as T increases, and then it starts to increase when T exceeds about 1300 K. It
is remarkable that such skewing behaviour is qualitatively reproduced by the present theory
above 1500 K. The modified two-state van der Waals model of Ross and Hensel [17] indicated
that the change in the slope of ρd is interrelated with the M–NM transition in the liquid phase.
Experimentally, ρd shifts again to lower density in the very vicinity of the critical point, which
cannot be reproduced by our equation of state.

Because the present theory contains structural information for the reference hard-sphere
fluid, it is instructive to list the values of the optimized core diameter in the liquid phase
along the coexistence curve: σ/aB = 5.59 (ρm = 5.8 g cm−3, T = 1774 K), 5.58
(11.5 g cm−3, 1000 K), and 5.67 (13.8 g cm−3, 300 K). Thus, σ remains virtually constant
in the density range, ρm = 5.8–11.5 g cm−3, in spite of considerable decrease of T . In this
density range, we find the proportionality relation, 〈z〉 ≈ 0.49ρm (g cm−3), which embodies
the picture of inhomogeneous expansion [18].

In figure 4, the distribution function pHS(z) is illustrated and compared with the data
of reverse Monte Carlo (RMC) simulation by Arai and McGreevy [19] deduced from the
measured structure factors of mercury. At ρm = 6.8 g cm−3, pHS(z) is virtually confined
within the nonmetallic regime, with a peak at z = 3. At the normal liquid density at 293 K, the
peak is located at z = 7, where strong cohesive force due to metallic bonding is expected,
as we see in figure 1. The RMC distribution functions systematically shift to the low-z
side, probably because rmax was fixed at a relatively small value of 6.05aB [19]; we adopt
rmax = 1.176σ ≈ 6.67aB in this work.

The influence of many-body interaction on the coexistence curve was studied by several
investigators from different viewpoints. Raabe and Sadus [20] replaced Vmb by an effective
potential of the form C(T )/r 9, where C(T ) was determined to match the experimental liquid
density below 1073 K. We have not introduced such phenomenological T - or n-dependent
factors in the interatomic potentials. Redmer and collaborators [21] treated fluid mercury
as a partially ionized non-ideal plasma composed of ions, conduction electrons and neutral
atoms. The shape of their coexistence curve on the ρm–T plane is somewhat too sharp; the
same tendency was found in our previous calculation as well [22]. This would imply that the
delocalized electrons do not extend uniformly over the entire space but rather that the local
electronic states are governed by local density fluctuation, as pointed out by Chacón et al [23]
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Figure 4. Distributions of coordination number at (ρm, T ) = (13.55 g cm−3, 293 K),
(6.8 g cm−3, 1803 K). The solid curves depict pHS(z); the dotted curves, the reverse Monte Carlo
(RMC) data by Arai and McGreevy [19].

in their lattice gas theory of fluid alkali metals. A salient feature of the present theory is that the
effect of density fluctuation is included through pHS(z) without assuming a hypothetical lattice.

The present formalism is closely related to the earlier theoretical model by Rosenfeld [24].
He utilized zero-temperature equations of state for solids as the only input information, and
successfully explained the experimental critical points for rare gases and alkali metals, but
not for mercury. His theory assumed that the interaction energy of an atom in the fluid
is proportional to the local coordination number, and hence the former was evaluated by
extrapolating the solid-state data at z = 12 towards the small-z regime [24, 25]. We claim that
such an extrapolation is not valid for mercury, because the interaction energies in the metallic
and nonmetallic regimes behave in quite different manners, as we see in figure 1. We also
remark that, in the low-density gas phase with 〈z〉 ≈ 0, the interaction part of equation (2)
is dominated by the accurate diatomic potential Vdimer(r), which is absent in the theory of
Rosenfeld [24].

In conclusion, we have developed a variational equation of state for expanded fluid
mercury by taking into account the cooperative interatomic interaction associated with local
density fluctuation. Our equation of state can successfully reproduce the observed gas–liquid
coexistence curve. As the density increases, the atomic coordination number increases, giving
rise to a change in the local electronic states and the creation of strong attractive many-body
forces among the atoms. Such associative interaction plays a dominant role in the gas–liquid
transition of mercury.

The author thanks Dr F Hensel, Dr R M More, Dr R Redmer, Dr M Yao, and Dr H Yoneda for
pertinent discussions. This work was supported in part through a Grant-in-Aid for Scientific
Research provided by the Japanese Ministry of Education, Science, Sports and Culture.
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